Resistance of angiotensin I converting enzyme to hydrolysis by serine proteases

(Received 21 April 1981; accepted 18 September 1981)

Angiotensin I converting enzyme (EC 3.4.15.1, A₁CE)* is a key enzyme in the renin/angiotensin system that regulates blood pressure. A₁CE has the dual function both of generating the pressor peptide hormone angiotensin II and, also, of inactivating the depressor peptide hormone bradykinin [1]. The enzyme is an acidic glycoprotein consisting of a single polypeptide chain of molecular weight 140,000 with an isoelectric point of 4.6 [2].

The kallikreins also are acidic glycoproteins previously thought to be specific for the proteolysis of kininogens. However, Sealey et al. [3] demonstrated that human urinary kallikrein was, in fact, capable of efficiently activating pro-renin. Thus, proteolysis by kallikreins is not limited to the release of kinins, and activation of pro-enzymes may be an important additional regulatory role for the kallikreins. Although human plasma kallikrein is selective and similar to human urinary kallikrein, it nevertheless has a somewhat broader substrate specificity than the urinary enzyme [4].

Nakahara [5] recently reported that A₁CE was cleaved by human plasma kallikrein into enzymatically active subunits (mol. wt 180,000 and 95,000) with a total of 170% of the original A₁CE activity, that A₁CE is inactivated by trypsin, plasmin, or thrombin, and that A1CE is inhibited by Trasylol and soybean trypsin inhibitor. These results, if true, would be quite significant. They would indicate that kallikrein, the enzyme that generates bradykinin, activates A₁CE, one of the enzymes that destroys bradykinin, and thus is part of a balanced system regulating tissue levels of bradykinin. Other components of this system would include plasmin and thrombin. Nakahara hypothesized that kallikrein would ultimately reduce levels of bradykinin by generating enhanced bradykininase activity from A₁CE, while plasmin and thrombin would potentiate the effect of bradykinin through inactivation of A₁CE.

However, the data Nakahara presented to support his hypothesis were not unequivocal, since they were obtained using preparations of both A₁CE and kallikrein that were highly contaminated with extraneous proteins. We therefore decided to investigate the kinetic and structural changes in homogeneous human plasma A₁CE that are produced by kallikrein from both human plasma and urine and also by a select group of proteolytic enzymes of the serine protease family that have comparable specificity.

Materials and methods

Human plasma A₁CE. The enzyme was purified from outdated human plasma as previously described [6]. At this stage, the A₁CE specific activity is 40 units/mg using Hip-His-Leu as substrate [7]. The enzyme gives a single band when analyzed by SDS-PAGE [8].

Human kallikrein. The urinary enzyme was isolated by DEAE-cellulose, Trasylol-Sepharose affinity and Sephacryl S-200 gel chromatographies as reported previously [9, 10]. Kinin-generating and arginyl esterase specific activities of this preparation are the highest [9] of any preparation reported so far. Furthermore, the enzyme is

pure by immunological criteria. The plasma enzyme was a gift from Dr. Y. Hojima, Scripps Clinic and Research Foundation, La Jolla, CA. It has a specific activity of 86 μmoles·min⁻¹·mg⁻¹ against D-Pro-Phe-Arg-pNA and of 64 μmoles·min⁻¹·mg⁻¹ against TAME.

Proteolytic enzymes and inhibitors. Human urokinase (Lot No. 98C-03401), porcine plasmin (77C-0053), bovine α-chymotrypsin (105C-8120) and soybean trypsin inhibitor (T-9003) were purchased from the Sigma Chemical Co., St. Louis, MO. Human plasminogen (5280 HPG 59E 560), human thrombin (HTH-49), bovine trypsin (TRTPCK 0FA) and Trasylol (3210 PTI) were purchased from the Worthington Chemical Co., Nutley, NJ. A protease detection kit was from Bio-Rad Laboratories, Richmond, CA.

Proteolysis of A_1CE . A typical reaction mixture to determine the susceptibility of A_1CE to proteolysis contained approximately $2 \mu g$ of A_1CE as substrate and $0.5 \mu g$ or more of the proteolytic enzyme in a final volume of $0.25 \, \text{ml}$ of $0.1 \, \text{M}$ sodium phosphate buffer, pH 8.5. The control included A_1CE and all other reagents except the proteolytic enzyme. The mixtures were incubated at 37° for up to $60 \, \text{min}$. At selected time intervals, aliquots were removed and assayed for A_1CE activity.

Determination of enzyme activity. A₁CE activity was monitored by two methods. In method A, the radiolabeled substrate Hip-His-Leu was used according to Ryan et al. [11] in 0.05 M Hepes buffer, pH 8.0, containing 0.1 M sodium chloride and 0.75 M sodium sulfate. In method B unlabeled Hip-His-Leu was used according to a modification of the method of Cushman and Cheung [12] as previously described [7]. Kallikrein activity was monitored using Pro-Phe-Arg-[³H]BA [13] as substrate.

Polyacrylamide gel electrophoresis. It is conceivable that fragmentation of the A₁CE molecule by proteolytic enzymes is not reflected in an observable parallel loss of A₁CE activity. Therefore, it is important to monitor structural as well as enzymatic changes in A₁CE. The structural changes were monitored by PAGE in the presence of SDS by subjecting aliquots from both experimental and control samples to SDS-PAGE on 7% polyacrylamide gels as previously described [8].

Results and discussion

In a recent publication, Nakahara [5] reported that human plasma A₁CE is a substrate for human plasma kallikrein and related serine proteases. In contrast, our results indicate that human plasma A₁CE is neither a substrate for human plasma kallikrein nor a substrate for human urinary kallikrein. In our experiments, no kinetic or structural changes of A₁CE were observed after treatment with any of the serine proteases. Treatment of A₁CE with human plasma kallikrein, human urinary kallikrein, human thrombin, porcine plasmin, human plasmin (generated in situ by the action of urokinase on plasminogen), bovine trypsin, and bovine α -chymotrypsin for time intervals up to 60 min did not reduce the activity of A₁CE to levels lower than those observed for controls (Table 1). The data with trypsin and α -chymotrypsin support the results of Oshima et al. [14] who found that A₁CE from hog kidney cortex was resistant to both of these enzymes.

Initially we observed loss of A_1CE activity in the presence of human plasmin. However, when the plasmin was dialyzed prior to addition to A_1CE , the loss of A_1CE activity did not occur. A low molecular weight contaminant, conceivably EDTA, was most probably responsible for the loss of A_1CE activity. This rationale was proposed when we discovered that the urokinase used to activate the plas-

^{*} Abbreviations: A₁CE, angiotensin I converting enzyme; SDS, sodium dodecylsulfate; PAGE, polyacrylamide gel electrophoresis; Hip-His-Leu, hippuryl-L-histidyl-L-leucine; KIU, kallikrein inhibitor units; DEAE, diethylaminoethyl; TAME, p-tosyl-L-arginine methyl ester D-Pro-Phc-Arg-pNA, D-prolyl-L-phenylanalyl-L-arginyl-p-nitroanilide; Pro-Phe-Arg-[³H]BA, L-prolyl-L-phenylanalyl-L-arginyl-[³H]benzyl amide; and Hepes, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid.

Proteolytic enzyme	Percent remaining A ₁ CE activity		
	0	Incubation time (min 30	60
Control	100	98	90
Plasma kallikrein (0.5 μg)	100	93	101
Ùrinary kallikrein (7.2 μg)	100	102	95
Thrombin (1 unit)	100	90	92
Porcine plasmin (5 μg)	100	105	97
Trypsin (5 μg)	100	95	88
α-Chymotrypsin (5 μg)	100	95	93
Human plasmin*	100	103	98

Table 1. Effects of proteolytic enzymes on A₁CE activity

minogen contained a high concentration of EDTA, a known A_1CE inhibitor. Substantial plasmin activity in the urokinase-treated plasminogen preparation after dialysis was confirmed using the Bio-Rad protease detection kit.

 $(10 \mu g)$

The serine protease inhibitors Trasylol at concentrations of 700–1400 KIU and soybean trypsin inhibitor at concentrations of 10–200 μ g per assay had no significant inhibitory effect on A_1CE . This is in marked contrast to the greater than 60% inhibition observed by Nakahara with concentrations of soybean trypsin inhibitor as low as 10 μ g per assay. We observed similar results with Trasylol, once again in marked contrast to the results of Nakahara. These results can be rationalized if one assumes that the enzyme prepared by Nakahara was a serine protease, and that A_1CE is not a serine protease.

The structural integrity of A₁CE was monitored by SDS-PAGE. No change in the single polypeptide chain primary structure of A₁CE was observed in the presence of the proteolytic enzymes. The molecular weight of A₁CE by SDS-PAGE was 140,000 as previously reported [2]. A typical set of control and sample gels is shown for A₁CE after treatment with human plasma kallikrein (Fig. 1). Identical results (not shown) were observed after treatment of A₁CE with human urinary kallikrein, human thrombin, porcine plasmin, human plasmin, bovine trypsin, and bovine a-chymotrypsin. Although SDS-PAGE might not detect subtle changes in the primary structure of A₁CE, it most certainly has enough resolving power to detect the structural changes observed by Nakahara.

The A₁CE assay system used by Nakahara with the synthetic substrate Hip-His-Leu included cobalt ions. Cobalt ions are not necessary for human plasma A₁CE activity. They are known to induce a cryptic A₁CE-like activity in guinea pig and hog plasma that is mediated by an enzyme with a molecular weight above 400,000 and that does not require chloride ion for activity and, therefore, is not a true A₁CE [15]. Possibly such an enzyme also exists in human plasma. Furthermore, both bradykininase and A₁CE activity were measured using relatively non-specific bioassays. Thus, it is quite possible for kallikrein to have activated one or more intermediate proteases which then inactivated bradykinin by cleaving any of its peptide bonds and not necessarily the Pro7-Phe8 bond susceptible to A1CE cleavage. Although all A₁CEs are bradykininases, not all bradykininases are A₁CEs. Intermediate proteases—activated by either trypsin, plasmin, or thrombin-could also be associated with the inactivation of A₁CE.

Also, we question the accuracy of the molecular weight

of 180,000 reported by Nakahara for A_1CE subunit-1. This value is incompatible with previously published data indicating that A_1CE is a single polypeptide chain with a molecular weight of approximately 140,000 [2, 8, 16–18].

The differences between our data and those reported by Nakahara might be explained by assuming either the presence of at least two A_1CE -like enzymes in human plasma or an influence of extraneous proteins on A_1CE catalytic activity in heterogeneous preparations.

In summary, in a recent publication, Nakahara [5] reported that human plasma A₁CE is a substrate for some proteolytic enzymes. He found that A₁CE was cleaved in the presence of human plasma kallikrein to two enzymatically active subunits with a sum total of 170% of the original bradykininase activity as measured by bioassay. Both subunit-1 (mol. wt 180,000) and subunit-2 (mol. wt 95,000) had A₁CE-like, as well as bradykininase, activity. Also, Nakahara found that A₁CE is a substrate for trypsin, plasmin, and thrombin, can be cleaved to inactive fragments by these enzymes, and is inhibited by Trasylol and soybean trypsin inhibitor. However, the A₁CE employed in that study was not pure. Therefore, we performed similar experiments using a pure preparation of human plasma A₁CE with human plasma kallikrein and, in addition, human urinary kallikrein. The effects on A₁CE of other proteolytic enzymes, including trypsin, α -chymotrypsin, plasmins, and human thrombin, as well as inhibition by Trasylol and soybean trypsin inhibitor, were studied. AICE activity was monitored using the synthetic substrate Hip-His-Leu. Our results indicate that A₁CE activity was not affected by either kallikreins, trypsin, α -chymotrypsin, plasmins, or human thrombin. The structure of A₁CE, monitored by SDS-PAGE, was not altered by any of the proteolytic enzymes. In addition, A₁CE was not inhibited by 700-1400 KIU Trasylol or 10-200 μg soybean trypsin inhibitor. Possible explanations for the difference of these data from those of Nakahara include the presence of at least two A₁CE-like enzymes in human plasma and an influence of extraneous proteins on A₁CE catalytic activity in heterogeneous preparations.

Acknowledgements—The expert technical assistance of Pedro Hernandez and Joanne Stevens is appreciated. This work was supported in part by grants from the U.S. Public Health Service HL-22087 and HL-14456 (J. J. L. and B. L. F.). N. B. O. was supported in part by Grants HL-23304, HL-18318, and AM-21683 during the preparation of the manuscript.

^{*} Generated in situ by the addition of urokinase to the plasminogen assay mixture.



Fig. 1. SDS-PAGE of A₁CE after treatment with human plasma kallikrein. The 7% monomer gels were prepared as previously described [8]. The power setting was 8 mA/tube for 4 hr. Key: (A) untreated A₁CE; (B) A₁CE incubated with human plasma kallikrein; and (C) human plasma kallikrein.

*Evans Memorial Department of Clinical Research and the Department of Medicine
Boston University Medical Center Boston, MA 02118, U.S.A.
‡Department of Medicine
New England Medical Center Hospital
Boston, MA 02111, U.S.A.
§University of Miami School of Medicine
Miami, FL 33152, U.S.A.

NARENDRA B. OZA*†
JOSEPH J. LANZILLO‡
JAMES W. RYAN§
BARRY L. FANBURG‡

REFERENCES

- 1. E. G. Erdos, Biochem. Pharmac. 26, 1563 (1976).
- J. J. Lanzillo and B. L. Fanburg, Biochemistry 16, 5491 (1977).
- J. E. Sealey, S. A. Atlas, J. H. Laragh, N. B. Oza and J. W. Ryan, *Nature*, Lond. 275, 144 (1977).
- 4. M. Schachter, Pharmac. Rev. 31, 1 (1980).
- 5. M. Nakahara, Biochem. Pharmac. 27, 1651 (1978).
- J. J. Lanzillo, R. Polsky-Cynkin and B. L. Fanburg, Analyt. Biochem. 103, 400 (1980).
- J. J. Lanzillo and B. L. Fanburg, J. biol. Chem. 249, 2312 (1974).
- J. J. Lanzillo and B. L. Fanburg, Biochim. biophys. Acta 439, 125 (1976).
- 9. N. B. Oza and J. W. Ryan, Biochem. J. 171, 285 (1978).
- N. B. Oza, V. M. Amin, R. K. McGregor, A. G. Scicli and O. A. Carretero, *Biochem. Pharmac.* 25, 1607 (1976).
- J. W. Ryan, A. Chung, C. Ammons and M. L. Carlton, Biochem. J. 167, 501 (1977).
- 12. D. W. Cushman and H. S. Cheung, *Biochem. Pharmac.* **20**, 1637 (1971).
- A. Chung, J. W. Ryan, G. Pena and N. B. Oza, Adv. exp. Med. Biol. 120A, 115 (1979).
- G. Oshima, K. Nagasawa and J. Kato, J. Biochem., Tokyo 80, 477 (1976).
- A. Grandino and A. C. Paiva, Biochim. biophys. Acta 364, 113 (1974).
- 16. M. Das and R. L. Soffer, J. biol. Chem. 250, 6762 (1975)
- H. J. Lee, J. N. LaRue and I. B. Wilson, Biochim. biophys. Acta 235, 521 (1971).
- H. J. Lee, J. N. LaRue and I. B. Wilson, Archs Biochem. Biophys. 142, 548 (1971).

[†] Address all correspondence to: Narendra B. Oza, Ph.D., University Hospital, Renal Unit, Boston University Medical Center, 75 East Newton St., Boston, MA 02118, U.S.A.